In many texts, the transition from classical mechanics to quantum mechanics is achieved by substituting the action for the phase angle. The paper presents a different approach to show some… Click to show full abstract
In many texts, the transition from classical mechanics to quantum mechanics is achieved by substituting the action for the phase angle. The paper presents a different approach to show some connections between classical and quantum mechanics for a single particle for an audience at graduate and postgraduate levels. Firstly, it is shown that a wave equation of action can be derived under the free particle condition and the Legendre transform. The wave-like solutions of the action, Hamiltonian and momentum of the free particle are presented. Using the discrete approximation, the equation of motion of a single particle, in scalar potential field, is obtained in a similar form to Schrodinger's equation. The rest of the paper discusses the propagation, superposition of the wave-like dynamic variables and their connections to quantum mechanics. The superposition of the variables of a particle is generally distinct from the superposition of classical waves (e.g. acoustics). The quantum superposition provides a self-consistent interpretation of the wave-like solutions of the variables. Connections between the classical and quantum relations for corresponding variables are observed from the one-to-one comparisons.
               
Click one of the above tabs to view related content.