LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A High-Pulse-Energy High-Beam-Quality Tunable Ti:Sapphire Laser Using a Prism-Dispersion Cavity*

Photo from wikipedia

A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740–855 nm is obtained.… Click to show full abstract

A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740–855 nm is obtained. At an incident pump energy of 774 mJ, the maximum output energy of 104 mJ at 790 nm with a pulse width of 100 μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M 2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740–855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.

Keywords: pulse energy; beam quality; laser; energy

Journal Title: Chinese Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.