High-resistivity silicon-on-insulator (HR-SOI) and trap-rich high-resistivity silicon-on-insulator (TR-SOI) substrates have been widely adopted for high-performance rf integrated circuits. Radio-frequency loss and non-linearity characteristics are measured from coplanar waveguide (CPW) transmission… Click to show full abstract
High-resistivity silicon-on-insulator (HR-SOI) and trap-rich high-resistivity silicon-on-insulator (TR-SOI) substrates have been widely adopted for high-performance rf integrated circuits. Radio-frequency loss and non-linearity characteristics are measured from coplanar waveguide (CPW) transmission lines fabricated on HR-SOI and TR-SOI substrates. The patterned insulator structure is introduced to reduce loss and non-linearity characteristics. A metal-oxide-semiconductor (MOS) CPW circuit model is established to expound the mechanism of reducing the parasitic surface conductance (PSC) effect by combining the semiconductor characteristic analysis (pseudo-MOS and C–V test). The rf performance of the CPW transmission lines under dc bias supply is also compared. The TR-SOI substrate with the patterned oxide structure sample has the minimum rf loss (<0.2 dB/mm up to 10 GHz), the best non-linearity performance, and reductions of 4 dB and 10 dB are compared with the state-of-the-art TR-SOI sample's, HD2 and HD3, respectively. It shows the potential application for integrating the two schemes to further suppress the PSC effect.
               
Click one of the above tabs to view related content.