LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity

Photo by kattrinnaaaaa from unsplash

We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose–Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev.… Click to show full abstract

We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose–Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 109 (2012) 116405], a new type of Floquet bound state can be obtained even for a weak particle–particle interaction by tuning the driving amplitude. Moreover, the localization degree of the Floquet bound molecular state can be adjusted by tuning the driving frequency, and even the Floquet bound molecular state can be changed into the Floquet extended state when the driving frequency is below a critical value. Our results provide an efficient way to manipulate bound states in the many-body systems.

Keywords: bound states; two particle; floquet bound; particle bose; particle; bose hubbard

Journal Title: Chinese Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.