LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Lévy-Leblond–Newton equation and its symmetries: a geometric view

Photo from academic.microsoft.com

The L\'evy-Leblond-Newton (LLN) equation for non-relativistic fermions with a gravitational self-interaction is reformulated within the framework of a Bargmann structure over a $(n+1)$-dimensional Newton-Cartan (NC) spacetime. The Schr\"odinger-Newton (SN) group,… Click to show full abstract

The L\'evy-Leblond-Newton (LLN) equation for non-relativistic fermions with a gravitational self-interaction is reformulated within the framework of a Bargmann structure over a $(n+1)$-dimensional Newton-Cartan (NC) spacetime. The Schr\"odinger-Newton (SN) group, introduced in [21] as the maximal group of invariance of the SN equation, turns out to be also the group of conformal Bargmann automorphisms preserving the coupled L\'evy-Leblond and NC gravitational field equations. Within the Bargmann geometry a generalization of the LLN equation is provided as well. The canonical projective unitary representation of the SN group on 4-component spinors is also presented. In particular, when restricted to dilations, the value of the dynamical exponent $z=(n+2)/3$ is recovered as previously derived in [21] for the SN equation. Subsequently, conserved quantities associated to the (generalized) LLN equation are also exhibited.

Keywords: newton equation; lln equation; group; leblond newton; equation symmetries; equation

Journal Title: Classical and Quantum Gravity
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.