LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discontinuous collocation methods and gravitational self-force applications

Photo from academic.microsoft.com

Numerical simulations of extreme mass ratio inspirals, the most important sources for the LISA detector, face several computational challenges. We present a new approach to evolving partial differential equations occurring… Click to show full abstract

Numerical simulations of extreme mass ratio inspirals, the most important sources for the LISA detector, face several computational challenges. We present a new approach to evolving partial differential equations occurring in black hole perturbation theory and calculations of the self-force acting on point particles orbiting supermassive black holes. Such equations are distributionally sourced, and standard numerical methods, such as finite-difference or spectral methods, face difficulties associated with approximating discontinuous functions. However, in the self-force problem we typically have access to full a priori information about the local structure of the discontinuity at the particle. Using this information, we show that high-order accuracy can be recovered by adding to the Lagrange interpolation formula a linear combination of certain jump amplitudes. We construct discontinuous spatial and temporal discretizations by operating on the corrected Lagrange formula. In a method-of-lines framework, this provides a simple and efficient method of solving time-dependent partial differential equations, without loss of accuracy near moving singularities or discontinuities. This method is well-suited for the problem of time-domain reconstruction of the metric perturbation via the Teukolsky or Regge–Wheeler–Zerilli formalisms. Parallel implementations on modern CPU and GPU architectures are discussed.

Keywords: discontinuous collocation; force; collocation methods; gravitational self; self force; methods gravitational

Journal Title: Classical and Quantum Gravity
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.