LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First-order Lagrangian and Hamiltonian of Lovelock gravity

Photo by jeffreywang from unsplash

Based on the insight gained by many authors over the years on the structure of the Einstein–Hilbert, Gauss–Bonnet and Lovelock gravity Lagrangians, we show how to derive-in an elementary fashion-their… Click to show full abstract

Based on the insight gained by many authors over the years on the structure of the Einstein–Hilbert, Gauss–Bonnet and Lovelock gravity Lagrangians, we show how to derive-in an elementary fashion-their first-order, generalized ‘Arnowitt–Deser–Misner’ Lagrangian and associated Hamiltonian. To do so, we start from the Lovelock Lagrangian supplemented with the Myers boundary term, which guarantees a Dirichlet variational principle with a surface term of the form π ij δh ij , where π ij is the canonical momentum conjugate to the boundary metric h ij . Then, the first-order Lagrangian density is obtained either by integration of π ij over the metric derivative ∂ w h ij normal to the boundary, or by rewriting the Myers term as a bulk term.

Keywords: lovelock; order lagrangian; first order; lovelock gravity

Journal Title: Classical and Quantum Gravity
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.