LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Seismic noise characterisation at a potential gravitational wave detector site in Australia

Photo from wikipedia

A critical consideration in the design of next-generation gravitational wave detectors is the understanding of the seismic environment that can introduce coherent and incoherent noise of seismic origin at different… Click to show full abstract

A critical consideration in the design of next-generation gravitational wave detectors is the understanding of the seismic environment that can introduce coherent and incoherent noise of seismic origin at different frequencies. We present detailed low-frequency ambient seismic noise characterisation (0.1–10 Hz) at the Gingin site in Western Australia. Unlike the microseism band (0.06–1 Hz) for which the power shows strong correlations with nearby buoy measurements in the Indian Ocean, the seismic spectrum above 1 Hz is a complex superposition of wind induced seismic noise and anthropogenic seismic noise which can be characterised using beamforming to distinguish between the effects of coherent and incoherent wind induced seismic noise combined with temporal variations in the spatio-spectral properties of seismic noise. This also helps characterise the anthropogenic seismic noise. We show that wind induced seismic noise can either increase or decrease the coherency of background seismic noise for wind speeds above 6 m s−1 due to the interaction of wind with various surface objects. In comparison to the seismic noise at the Virgo site, the secondary microseism (0.2 Hz) noise level is higher in Gingin, but the seismic noise level between 1 and 10 Hz is lower due to the sparse population and absence of nearby road traffic.

Keywords: noise; noise characterisation; gravitational wave; site; seismic noise

Journal Title: Classical and Quantum Gravity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.