LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slowly rotating Tolman VII solution

Photo from wikipedia

We present a model of a slowly rotating Tolman VII (T-VII) fluid sphere, at second order in the angular velocity. The structure of this configuration is obtained by integrating numerically… Click to show full abstract

We present a model of a slowly rotating Tolman VII (T-VII) fluid sphere, at second order in the angular velocity. The structure of this configuration is obtained by integrating numerically the Hartle-Thorne equations for slowly rotating relativistic masses. We consider a sequence of models where we vary the parameter R/Rs, where R is the radius of the configuration and Rs is its Schwarzschild radius, representing an adiabatic and quasi-stationary contraction by progressively reducing the radius while keeping the angular momentum and gravitational mass constant. We determined the moment of inertia I, mass quadrupole moment Q, and the ellipticity ε, for various configurations. Similarly to previous results for Maclaurin and polytropic spheroids, in slow rotation, we found a change in the behaviour of the ellipticity when R/Rs reaches a certain critical value. Based on our analysis for the T-VII solution, we found variations of O(10)% in the I-C and Q-C relations, and O(1)% variation in the I-Q relation, with respect to the universal fittings proposed for realistic neutron stars. Our results suggest that the T-VII solution can be considered a rather good approximation for the description of the interior of neutron stars.

Keywords: vii solution; slowly rotating; tolman vii; rotating tolman

Journal Title: Classical and Quantum Gravity
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.