LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The low rank approximations and Ritz values in LSQR for linear discrete ill-posed problem

Photo by nypl from unsplash

LSQR and its mathematically equivalent CGLS have been popularly used over the decades for large-scale linear discrete ill-posed problems, where the iteration number $k$ plays the role of the regularization… Click to show full abstract

LSQR and its mathematically equivalent CGLS have been popularly used over the decades for large-scale linear discrete ill-posed problems, where the iteration number $k$ plays the role of the regularization parameter. It has been long known that if the Ritz values in LSQR converge to the large singular values of $A$ in natural order until its semi-convergence then LSQR must have the same the regularization ability as the truncated singular value decomposition (TSVD) method and can compute a 2-norm filtering best possible regularized solution. However, hitherto there has been no definitive rigorous result on the approximation behavior of the Ritz values in the context of ill-posed problems. In this paper, for severely, moderately and mildly ill-posed problems, we give accurate solutions of the two closely related fundamental and highly challenging problems on the regularization of LSQR: (i) How accurate are the low rank approximations generated by Lanczos bidiagonalization? (ii) Whether or not the Ritz values involved in LSQR approximate the large singular values of $A$ in natural order? We also show how to judge the accuracy of low rank approximations reliably during computation without extra cost. Numerical experiments confirm our results.

Keywords: linear discrete; ritz values; ill posed; rank approximations; low rank

Journal Title: Inverse Problems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.