LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On diffusive scaling in acousto-optic imaging

Photo by harpreetkaka from unsplash

Acousto-optic imaging (AOI) is a hybrid imaging process. By perturbing the to-be-reconstructed tissues with acoustic waves, one introduces the interaction between the acoustic and optical waves, leading to a more… Click to show full abstract

Acousto-optic imaging (AOI) is a hybrid imaging process. By perturbing the to-be-reconstructed tissues with acoustic waves, one introduces the interaction between the acoustic and optical waves, leading to a more stable reconstruction of the optical properties. The mathematical model was described in [25], with the radiative transfer equation serving as the forward model for the optical transport. In this paper we investigate the stability of the reconstruction. In particular, we are interested in how the stability depends on the Knudsen number, Kn, a quantity that measures the intensity of the scattering effect of photon particles in a media. Our analysis shows that as Kn decreases to zero, photons scatter more frequently, and since information is lost, the reconstruction becomes harder. To counter this effect, devices need to be constructed so that laser beam is highly concentrated. We will give a quantitative error bound, and explicitly show that such concentration has an exponential dependence on Kn. Numerical evidence will be provided to verify the proof.

Keywords: scaling acousto; reconstruction; optic imaging; acousto optic; diffusive scaling

Journal Title: Inverse Problems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.