LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonconvex and nonsmooth total variation regularization method for diffuse optical tomography based on RTE * * Submitted Funding: this work is supported by the National Natural Science Foundation of China (Grant No. 11701159).

Photo by kseegars from unsplash

Diffuse optical tomography with near-infrared light is a promising technique for noninvasive study of the functional characters of human tissues. Mathematically, it is a seriously ill-posed parameter identification problem. For… Click to show full abstract

Diffuse optical tomography with near-infrared light is a promising technique for noninvasive study of the functional characters of human tissues. Mathematically, it is a seriously ill-posed parameter identification problem. For the purpose of better providing both segmentation and piecewise constant approximation of the underlying solution, nonconvex nonsmooth total variation based regularization functional is considered in this paper. We first give a theoretical study on the well-posedness of solutions corresponding to this minimization problem in the Banach space of piecewise constant functions. Moreover, our theoretical results show that the minimizers corresponding to a sequence nonconvex nonsmooth potential functions which converge to the 0–1 functions, can be used to approximate the solution to the weak Mumford–Shah regularization. Then from the numerical side, we propose a double graduated nonconvex Gauss–Newton algorithm to solve this nonconvex nonsmooth regularization. All illustrations and numerical experiments give a flavor of the possibilities offered by the minimizers of the proposed algorithm.

Keywords: nonsmooth total; diffuse optical; total variation; regularization; optical tomography; nonconvex nonsmooth

Journal Title: Inverse Problems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.