A robust silicon carbide (SiC) microheater is used for stable low-power catalytic gas sensing at high operating temperatures, where previously developed low-power polycrystalline silicon (polysilicon) microheaters are unstable. The silicon… Click to show full abstract
A robust silicon carbide (SiC) microheater is used for stable low-power catalytic gas sensing at high operating temperatures, where previously developed low-power polycrystalline silicon (polysilicon) microheaters are unstable. The silicon carbide microheater has low power consumption (20 mW to reach 500 °C) and exhibits an order of magnitude lower resistance drift than the polysilicon microheater after continuously heating at 500 °C for 100 h and during temperature increases up to 650 °C. With the deposition of platinum nanoparticle-loaded boron nitride aerogel, the SiC microheater-based catalytic gas sensor detects propane with excellent long-term stability while exhibiting fast response and recovery time (~1 s). The sensitivity is not affected by humidity, nor during 10% duty cycling, which yields a power consumption of only 2 mW with frequent data collection (every 2 s). With a simple change of heater material from silicon to SiC, the microheater and resulting catalytic gas sensor element show significant performance improvement.
               
Click one of the above tabs to view related content.