Development of carbon based micro electromechanical systems (C-MEMS) has enabled the fabrication of durable, low cost and biocompatible micro devices for specific applications. Thermochemical decomposition of SU-8 (a common photoresist)… Click to show full abstract
Development of carbon based micro electromechanical systems (C-MEMS) has enabled the fabrication of durable, low cost and biocompatible micro devices for specific applications. Thermochemical decomposition of SU-8 (a common photoresist) is often used to fabricate C-MEMS. However, this technique has yielded unreliable results when fabrication on transparent substrates is required due to cracking and detachment of the produced carbon micro structures. We present a methodology for the fabrication of photopatterned carbon films based on SU-8 deposited on transparent fused silica substrates. Specifically, we developed and implemented this methodology for carbon microstructure fabrication derived from SU-8 2035 and SU-8 3035. It was found that SU-8 3035 derived carbon microstructures were crack free and adhered well to the substrate, while SU-8 2035 resulted in fractured and detached carbon microstructures. In addition, we characterized the produced SU-8 3035 derived carbon by measuring its electrical resistivity (1.412 ± 0.011 mΩ m), inter-structure electrical resistance, contact angle (35.7° ± 6.0°), Raman spectrum and adhesion strength to the substrate. In brief, even though SU-8 2035 and SU-8 3035 are useful materials for C-MEMS fabrication, we found that SU-8 3035 is more suitable for the fabrication of crack free and adherent carbon microstructures on transparent fused silica substrates.
               
Click one of the above tabs to view related content.