LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La0.67Sr0.33MnO3 films

Photo by mat_graphik from unsplash

The crystal structural quality and the strain induced by the substrate strictly impose the magnetic and transport properties of La0.67Sr0.33MnO3 (LSMO) films. In particular, the magnetic anisotropy (MA) of epitaxial… Click to show full abstract

The crystal structural quality and the strain induced by the substrate strictly impose the magnetic and transport properties of La0.67Sr0.33MnO3 (LSMO) films. In particular, the magnetic anisotropy (MA) of epitaxial LSMO can be finely tuned by varying its thickness and by choosing single crystal substrates with suitable lattice mismatch with the film. Here, we have deposited LSMO films with thicknesses in the 12-50 nm range by pulsed laser deposition on different single crystal substrates inducing either compressive or tensile in-plane strain on the manganites. The epitaxial quality of films was quantified by ω-scans around (002) peak with full-width half-maximum (FWHM) values as low as 0.08° for films on the nearly matched NGO (110) substrate to 1.4° films on high mismatched MgO (001) substrate. As the epitaxial strain in thin-film increases, a significant reduction in metal-insulation transition (MIT) temperature (Tp) was observed. The magnetic properties of the films probed by Kerr magnetometry show that the symmetry of the room temperature MA varies significantly as a function of both strain and thickness. Specifically, we observed pure uniaxial MA on NGO (110) and pure biaxial MA on STO buffered MgO (001), whereas a spin reorientation from uniaxial in-plane to out-of-plane on LSAT (001) and uniaxial to nearly isotropic in-plane on STO (001) substrate as the film thickness is increased. We provide an efficient tool to tune the MA according to the specific spintronic application targeted.

Keywords: properties la0; epitaxial strain; la0 67sr0; 67sr0 33mno3; strain; thickness

Journal Title: Journal of Physics D: Applied Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.