LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A combined laboratory and synchrotron in-situ photoemission study of the rutile TiO2 (110)/water interface

Photo from wikipedia

In-situ analysis of the TiO2/water interface via near ambient pressure–x-ray photoelectron spectroscopy (NAP–XPS) is demonstrated in both a lab based system (NAP-cell configuration) and synchrotron endstation (backfill configuration). Ultra-thin wetting… Click to show full abstract

In-situ analysis of the TiO2/water interface via near ambient pressure–x-ray photoelectron spectroscopy (NAP–XPS) is demonstrated in both a lab based system (NAP-cell configuration) and synchrotron endstation (backfill configuration). Ultra-thin wetting layers of liquid water (∼10 nm) are formed on a rutile TiO2 surface with minimal contamination present in addition to unique insight during the growth of the liquid films as indicated via NAP–XPS, in-situ sample temperature and background vapour pressure monitoring. Chemical changes at the solid/liquid interface are also demonstrated via healing of Ti3+ surface defect states. Photon depth profiling of the as grown liquid layers indicate that the formed films are ultra-thin (∼10 nm) and likely to be continuous in nature. This work demonstrates a novel and flexible approach for studying the solid/liquid interface via NAP–XPS which is readily integrated with any form of NAP–XPS system, thereby making a critical interface of study available to a wide audience of researchers for use in operando electrochemical and photocatalytic research.

Keywords: synchrotron; water interface; nap xps; water; rutile tio2; interface

Journal Title: Journal of Physics D: Applied Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.