LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of cathode-spot crater and droplet formation in a vacuum arc

Photo from wikipedia

A 3D transient model of a cathode-spot crater and droplet formation in a vacuum arc is developed. The model includes mass, momentum, heat transfer (energy), current continuity and potential equations.… Click to show full abstract

A 3D transient model of a cathode-spot crater and droplet formation in a vacuum arc is developed. The model includes mass, momentum, heat transfer (energy), current continuity and potential equations. Using the energy flux density, current density and pressure as external parameters, the shape of the cathode-spot crater and the temperature, velocity, potential and current density distributions at each time step are determined via numerical simulation. Under symmetrical conditions, the 3D simulation results are highly consistent with those from the previous 2D model. The new cathode spot tends to appear in the direction in which the protrusion is largest because the liquid-metal velocity is lower and the liquid-metal ridge radius is larger in this direction. The effect of the external transverse magnetic field is considered by using a symmetric space function to represent the pressure and energy flux density of the plasma cloud. Simulation results show that even small changes in the plasma cloud distribution have a significant impact on the cathode-spot crater process and droplet formation. Since the pressure is asymmetric, the crater becomes asymmetric and the new cathode spot tends to appear opposite to the direction of the Ampere force. Based on this phenomenon, a possible explanation for the retrograde motion phenomenon of cathode spots is proposed.

Keywords: spot; droplet formation; cathode spot; spot crater

Journal Title: Journal of Physics D: Applied Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.