LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of multi-layered graphene/silicon Schottky junction in oxidizing atmosphere

Photo by campaign_creators from unsplash

In this study, we investigate a Schottky junction based on solution-processed multilayered graphene (MLG). We present a rectifying device obtained with a straightforward approach, that is drop-casting a few microliters… Click to show full abstract

In this study, we investigate a Schottky junction based on solution-processed multilayered graphene (MLG). We present a rectifying device obtained with a straightforward approach, that is drop-casting a few microliters of MLG solution simultaneously onto Si, Si–SiO2 and Si–SiO2–Cr/Au surface. Monitoring the modulation of Schottky barrier height while operating in reverse bias, we study the behavior of such prepared MLG-Si/junction (MLG-Si/J) when exposed to oxidizing atmosphere, especially to nitrogen oxide (NO2). We finally compare the sensing behavior of MLG-Si/J at 1 ppm of NO2 with that of a chemiresistor-based on similarly prepared solution-processed MLG. Our study thus opens the path towards low-cost highly sensitive graphene-based heterojunctions advantageously fabricated without any complexity in the technological process.

Keywords: physics; multi layered; investigation multi; schottky junction; oxidizing atmosphere; junction

Journal Title: Journal of Physics D: Applied Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.