LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High sensitivity ethanol vapor sensor based on a nematic liquid crystal film embedded optical fiber Sagnac interferometer

Photo from wikipedia

Interferometric optical fiber sensors have become the preferred choice for ethanol vapor detection because of their high sensitivity and figure of merit. However, the response time of interferometric fiber optic… Click to show full abstract

Interferometric optical fiber sensors have become the preferred choice for ethanol vapor detection because of their high sensitivity and figure of merit. However, the response time of interferometric fiber optic ethanol vapor sensors is very long. To address this issue, we experimentally investigated an ethanol vapor sensor based on a nematic liquid crystal (NLC) film embedded optical fiber Sagnac interferometer. The high birefringent NLC film, which worked as the sensing media of ethanol vapor for its absorption of ethanol vapor, was penetrated into the Sagnac ring to generate the spectral interference. The results showed that the measurement sensitivity of ethanol gas concentration reached 2.22 pm ppm−1. The detection range was about 1210 ppm–10 000 ppm. Most importantly, the response time of the proposed sensor is only 15 s. The designed sensor, which showed the advantages of fast response, high sensitivity, and stability, could be a competitive candidate for ethanol vapor sensing.

Keywords: ethanol vapor; sensitivity; vapor; optical fiber; sensor

Journal Title: Journal of Physics D: Applied Physics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.