We present a methodology for characterization of soil relative dielectric permittivity in the frequency range 0.05–3 GHz. Soil samples are placed in a measurement cell constructed out of a EIA… Click to show full abstract
We present a methodology for characterization of soil relative dielectric permittivity in the frequency range 0.05–3 GHz. Soil samples are placed in a measurement cell constructed out of a EIA coaxial transmission line, and then measured with a calibrated vector-network-analyzer. From these measurements the relative dielectric permittivity is obtained by use of a modified Boughriet algorithm. In order to calibrate the vector-network-analyzer directly at the EIA coaxial-transmission-line measurement planes, we use the multiline through-reflect-line method. This method, while providing superior vector-network-analyzer calibration accuracy, is also easy to implement since it uses only transmission lines with known lengths and a single unknown highly-reflective termination. The implemented calibration method was compared to a simplified approach that uses the standard SOLT calibration in Type-N reference planes, and then accounts for the Type-N/EIA adapters by removing their electrical delay. Experimental results for teflon and soil samples with different moisture content and salinity confirmed the validity of our approach.
               
Click one of the above tabs to view related content.