LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advanced infrared thermography data analysis for unsteady boundary layer transition detection

Photo from wikipedia

Advanced data processing methods for detecting unsteady boundary layer transition in periodic aerodynamic processes by means of infrared thermography measurements are presented. The thermal radiation emitted from the heated suction… Click to show full abstract

Advanced data processing methods for detecting unsteady boundary layer transition in periodic aerodynamic processes by means of infrared thermography measurements are presented. The thermal radiation emitted from the heated suction surface of a pitching airfoil model in subsonic flow is measured with an infrared camera. The unsteady boundary layer transition location is detected by analyzing the difference in the infrared radiation signal over short periods of time with differential infrared thermography (DIT). The DIT method is optimized and automated in the present study, which facilitates the extension of the part of the motion period where valid DIT transition measurements are produced. Additionally, a new infrared thermography data processing method is introduced in this study. The extraction of the extrema of the measured radiation signal at fixed locations on the model surface yields instants of the motion period that relate to the occurrence of boundary layer transition. The local infrared thermography (LIT) approach can be extended to measuring the two-dimensional unsteady boundary layer transition front.

Keywords: infrared thermography; boundary layer; transition; layer transition

Journal Title: Measurement Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.