LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An enhanced sparse filtering method for transfer fault diagnosis using maximum classifier discrepancy

The speed of rotating parts is often affected by different working conditions in mechanical equipment, which results in more complications in the feature mapping relationship. However, existing methods that address… Click to show full abstract

The speed of rotating parts is often affected by different working conditions in mechanical equipment, which results in more complications in the feature mapping relationship. However, existing methods that address the large fluctuation problem in rotational speed have been formulated merely to improve test accuracy and do not consider the effects of irregular fluctuation frequency on the fault samples located at the class boundary. Thus, to distinguish the health conditions under frequent or irregular fluctuation speeds, this paper explores an enhanced sparse filtering (SF) algorithm based on maximum classifier discrepancy to diagnose the fault conditions caused by speed fluctuation. It considers the superiority of the task-specific decision boundary and adversarial training for the fault diagnosis network. Unlike traditional SF methods, the proposed framework introduces the Wasserstein distance to reduce the domain discrepancy between the source domain and the target domain and then uses the probability output discrepancy of the classifier to locate the fuzzy fault samples on the class boundary. This paper conducts theoretical analysis and experimental comparison and verifies the performance advantages of the framework through bearing and gear experiments under large speed fluctuation conditions. The proposed model also shows an excellent performance even when the speed fluctuates frequently.

Keywords: maximum classifier; fault; enhanced sparse; sparse filtering; fluctuation; discrepancy

Journal Title: Measurement Science and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.