LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

State-of-the-art nanotechnologies used in the development of SARS-CoV-2 biosensors: a review

Photo from wikipedia

The coronavirus disease (COVID-19) pandemic has spread to nearly every corner of the globe, significantly impacting economies and societies. Despite advances in detection technologies that target viral pathogens, all countries… Click to show full abstract

The coronavirus disease (COVID-19) pandemic has spread to nearly every corner of the globe, significantly impacting economies and societies. Despite advances in detection technologies that target viral pathogens, all countries are facing an unprecedented need to perform biosensing in a rapid, sensitive, selective, and reliable way to deal with global and urgent problems. To date, the reverse transcription-polymerase chain reaction has been the gold-standard method for COVID-19 diagnosis. However, it requires complex facilities and elaborate training and is hampered by limited testing capacity and delayed results. Herein, we review state-of-the-art research into point-of-care biosensors for early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. We include a general description of the nanotechnological techniques used to develop biosensors, along with the latest research into various biosensors for SARS-CoV-2 detection and a summary of their limitations for practical use. Finally, we discuss future perspectives and directions. This critical review offers the biosensor community insight into how to progress the present research, which may streamline the removal of the problems facing rapid and large-scale SARS-CoV-2 screening.

Keywords: state art; review state; sars cov; art nanotechnologies

Journal Title: Measurement Science and Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.