LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe

Photo from wikipedia

Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand… Click to show full abstract

Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after production. For the magnetic flux leakage (MFL) testing method, the detection sensitivity gradually decreases with the increase of wall thickness. To solve this problem, a new structure of MFL probe is proposed in this paper. The influence of the iron core permeability on the MFL signal is analyzed theoretically, and the effect of the core length and diameter on the MFL signal is analyzed by simulation. The variation of the MFL signal with the change of the iron core and coil lift-off is studied respectively. The simulation results are verified by experiments. It is found that the lift-off of the iron-cored coil is determined by the iron core position. Based on this phenomenon, an MFL array probe is designed, which can be used for online detection of thick-walled steel pipes to improve the detection sensitivity of inner wall defects.

Keywords: iron; detection; walled steel; thick walled

Journal Title: Measurement Science and Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.