Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell-chip coupling for robust and long-term electrophysiological recording and stimulation still remains… Click to show full abstract
Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell-chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell-electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.
               
Click one of the above tabs to view related content.