LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coarsening of carbon black supported Pt nanoparticles in hydrogen.

Photo by kirp from unsplash

This study addresses coarsening mechanisms of Pt nanoparticles supported on carbon black in hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6… Click to show full abstract

This study addresses coarsening mechanisms of Pt nanoparticles supported on carbon black in hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20% H2/Ar while ramping up the temperature to almost 1000 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in a hydrogen environment are stable up to ca. 800 °C at a heating rate of 10 °C min-1. The coarsening above this temperature is dominated by the particle migration and coalescence mechanism. However, for agglomerated Pt nanoparticles, coalescence events were observed already above 200 °C. The temperature-dependency of particle sizes and the observed migration distances are described and found to be consistent with simple early models for the migration and coalescence.

Keywords: nanoparticles hydrogen; black supported; coarsening carbon; carbon black

Journal Title: Nanotechnology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.