LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage.

Photo by ofisia from unsplash

A unique SnO2 nanorod (NR)/reduced graphene oxide (RGO) composite morphology has been synthesized using the in situ hydrothermal method, for use as an anode material in lithium-ion batteries. The SnO2… Click to show full abstract

A unique SnO2 nanorod (NR)/reduced graphene oxide (RGO) composite morphology has been synthesized using the in situ hydrothermal method, for use as an anode material in lithium-ion batteries. The SnO2 NR adhering to the RGO exhibits a length of 250-400 nm and a diameter of 60-80 nm without any obvious aggregation. The initial discharge/charge capacities of the SnO2 NR/RGO composite are 1761.3 mAh g-1 and 1233.1 mAh g-1, with a coulombic efficiency (CE) of 70% under a current density of 200 mA g-1, and a final capacity of 1101 mAh g-1 after 50 cycles. The rate capability of the SnO2 NR/RGO is also improved compared to that of bare SnO2 NR. The superior electrochemical performance is ascribed to the special morphology of the SnO2 NRs-which plays a role in shorting the transmission path-and the sheet-like 2D graphene, which prevents the agglomeration of SnO2 and enhances conductivity during the electrochemical reaction of SnO2 NR/RGO.

Keywords: graphene oxide; sno2; sno2 nanorod; rgo; nanorod reduced; reduced graphene

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.