LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strong uniaxial magnetic anisotropy in Co films on highly ordered grating-like nanopatterned Ge surfaces.

Photo by _zachreiner_ from unsplash

We present a systematic investigation on uniaxial magnetic anisotropy (UMA) in Co thin films induced by high aspect ratio nanopatterned anisotropic substrates. Self-organized long grating-like nanostructures, with extreme regularities, are… Click to show full abstract

We present a systematic investigation on uniaxial magnetic anisotropy (UMA) in Co thin films induced by high aspect ratio nanopatterned anisotropic substrates. Self-organized long grating-like nanostructures, with extreme regularities, are fabricated on Ge surfaces using Au-ion implantation at room temperature. Subsequently deposition of Co films are carried out on the same at two different angles. Magneto-optical Kerr effect measurements show strong UMA in Co films grown on ion-patterned Ge substrates, fabricated under different ion fluences, along and perpendicular to the direction of the patterns (long grating-like nanostructures). Magnetic force microscopy measurements under different externally applied magnetic fields reveal an easy domain wall motion when the field is applied along the grating-like nanostructures. On the other hand, high amplitude grating-like nanostructures hinder the spin rotation when the field is applied along the hard axis. The present study will be useful for magnetic recording media and ultra-small magnetic field sensors.

Keywords: strong uniaxial; uniaxial magnetic; grating like; magnetic anisotropy; like nanostructures

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.