LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled fabrication of electrically contacted carbon nanoscrolls.

Photo by sxy_selia from unsplash

Carbon nanoscrolls (CNS) with their open ended morphology have recently attracted interest due to the potential application in gas capture, biosensors and interconnects. However, CNS currently suffer from the same… Click to show full abstract

Carbon nanoscrolls (CNS) with their open ended morphology have recently attracted interest due to the potential application in gas capture, biosensors and interconnects. However, CNS currently suffer from the same issue that have hindered widespread integration of CNTs in sensors and devices: formation is done ex situ, and the tubes have to be placed with precision and reliability-a difficult task with low yield. Here, we demonstrate controlled in situ formation of electrically contacted CNS from suspended graphene nanoribbons with slight tensile stress. Formation probability depends on the length to width aspect ratio. Van der Waals interaction between the overlapping layers fixes the nanoscroll once formed. The stability of these CNSs is investigated by helium nano ion beam assisted in situ cutting. The loose stubs remain rolled and mostly suspended unless subject to a moderate helium dose corresponding to a damage rate of 4%-20%. One CNS stub remaining perfectly straight even after touching the SiO2 substrate allows estimation of the bending moment due to van der Waals force between the CNS and the substrate. The bending moment of 5400 eV is comparable to previous theoretical studies. The cut CNSs show long-term stability when not touching the substrate.

Keywords: fabrication electrically; electrically contacted; contacted carbon; controlled fabrication; carbon nanoscrolls

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.