LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus.

Photo from wikipedia

Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices.… Click to show full abstract

Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.

Keywords: photoluminescence; thermally annealed; black phosphorus; anisotropic visible

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.