LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

Photo by sxy_selia from unsplash

A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had… Click to show full abstract

A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm-3 at 0.3 A cm-3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm-3 at 0.5 A cm-3 and an outstanding energy density of 33.8 at 483 mW cm-3. Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm-3, indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

Keywords: free standing; energy; organic complexes; high volumetric; coating nickel; situ coating

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.