We investigate the prospects for current modulation in single layer graphene Y-junctions in the ballistic regime, under an external electric field. Overcoming the inability of inducing field effect in graphene… Click to show full abstract
We investigate the prospects for current modulation in single layer graphene Y-junctions in the ballistic regime, under an external electric field. Overcoming the inability of inducing field effect in graphene nanoribbons by a stacked gate, the proposed in-plane electric field setup enables a controlled current transfer between the branches of the Y-junction. This behavior is further confirmed by changing the angular incidence of the electric field. The ballistic transmission functions are calculated for the three terminal system using the non-equilibrium Green's function formalism, in the framework of density functional theory, under finite bias conditions. The edge currents dominating the transport in zigzag nanoribbons are strongly influenced by the induced dipole charge, facilitating the current modulation even for the metallic-like character of the Y-junctions. Spin polarization effects indicate the possibility of achieving spin filtering even in the absence of the external field provided the antiferromagnetic couplings between the edges are asymptotically set. Overall, our results indicate a robust behavior regarding the tunability of the charge current in the two outlet ports, showing the possibility of inducing field effect control in a single layer graphene system.
               
Click one of the above tabs to view related content.