LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near-field imaging of graphene triangles patterned by helium ion lithography.

Photo from wikipedia

Plasmon nanoresonators in graphene have many applications in biosensing, photodetectors and modulators. As a result, an efficient and precise patterning technique for graphene is required. Helium ion lithography (HIL) emerges… Click to show full abstract

Plasmon nanoresonators in graphene have many applications in biosensing, photodetectors and modulators. As a result, an efficient and precise patterning technique for graphene is required. Helium ion lithography (HIL) emerges as a promising tool for direct writing fabrication because it owns improved fabrication precision compared to electron beam lithography and conventional gallium focused ion beam technique. In this paper, utilizing HIL, a set of graphene triangles are patterned and excellent plasmon response is detected. Particularly, the evolution of breathing mode in these structures is unveiled by scattering-type scanning near-field optical microscopy. Besides, the plasmon response of graphene structures can be efficiently tuned by adjusting the irradiated ion dose during the etching process, which can be explained by the phenomenal simulation model. Our work demonstrates that HIL is a feasible way for precise plasmonic nanostructure fabrication, and can be applied to graphene plasmon control at the nanoscale as well.

Keywords: ion lithography; lithography; ion; triangles patterned; helium ion; graphene triangles

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.