LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large area porous 1D photonic crystals comprising silicon hierarchical nanostructures grown by plasma-assisted, nanoparticle jet deposition.

In this contribution, we describe a room-temperature, template-free, single-step approach for the growth of functional crystalline silicon nanostructures with tailored porosity and photonic properties. The method employs a plasma-assisted nanoparticle… Click to show full abstract

In this contribution, we describe a room-temperature, template-free, single-step approach for the growth of functional crystalline silicon nanostructures with tailored porosity and photonic properties. The method employs a plasma-assisted nanoparticle synthesis reactor in combination with a supersonic jet deposition stage, in what we call nanoparticle jet deposition or plasma-assisted, supersonic aerosol jet deposition. The relationship between plasma parameters, nanoparticle impaction conditions and the resulting silicon material structural characteristics is investigated. This understanding is successfully employed for the production of porous 1D photonic crystals obtained by periodically modulating the density of the hierarchical silicon nanostructures and hence their local refractive index. The open porosity of this device is then exploited in a proof of concept optical chemical sensor.

Keywords: jet; plasma assisted; jet deposition; assisted nanoparticle

Journal Title: Nanotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.