LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carrier dynamics in silicon nanowires studied via femtosecond transient optical spectroscopy from 1.1 to 3.5 eV.

Photo from wikipedia

We present femtosecond transient transmission (or absorbance) measurements in silicon nanowires in the energy range 1.1-3.5 eV, from below the indirect band-gap to above the direct band-gap. Our pump-probe measurements… Click to show full abstract

We present femtosecond transient transmission (or absorbance) measurements in silicon nanowires in the energy range 1.1-3.5 eV, from below the indirect band-gap to above the direct band-gap. Our pump-probe measurements allow us to give a complete picture of the carrier dynamics in silicon. In this way we perform an experimental study with a spectral completeness that is lacking in the whole literature on carrier dynamics in silicon. A particular emphasis is given to the dynamics of the transient absorbance at the energies relative to the direct band gap at 3.3 eV. Indeed, the use of pump energies below and above 3.3 eV allowed us to disentangle the dynamics of electrons and holes in their respective bands. The band gap renormalization of the direct band gap is also investigated for different pump energies. A critical discussion is given on the results below 3.3 eV where phonon-assisted processes are required in the optical transitions.

Keywords: carrier dynamics; band gap; dynamics silicon; spectroscopy

Journal Title: Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.