LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature.

Photo by omarprestwich from unsplash

Novel sea cucumber-shaped polyaniline/ferric oxide (PANI/Fe2O3) nanocomposites were synthesized using a simple and efficient one step hydrothermal process, and the nanocomposites were further assembled onto a polyethylene terephthalate (PET) flexible… Click to show full abstract

Novel sea cucumber-shaped polyaniline/ferric oxide (PANI/Fe2O3) nanocomposites were synthesized using a simple and efficient one step hydrothermal process, and the nanocomposites were further assembled onto a polyethylene terephthalate (PET) flexible substrate. Through the monitoring of the resistance of the PANI/Fe2O3 nanocomposites thick films and PANI/Fe2O3-PET flexible sensors, the responses of the sensors to various 100 ppm gases including methanol, triethylamine, aniline and another five gases were obtained. It was found that two kinds of sensors exhibit a high selectivity towards NH3. The PANI/Fe2O3 nanocomposites-based sensor has a good response and a low detection limit (0.3 ppm) at room temperature (20 ± 5 °C). It also shows a good linearity relationship in a certain concentration of NH3. After assembling into the PANI/Fe2O3-PET flexible film sensor, the response of the sensor is significantly increased to 6.12 for 100 ppm NH3, the detection limit is as low as 0.5 ppm, and the sensor shows good stability and linearity, which is more conducive to the application of such a material in wearable gas sensors.

Keywords: one step; fe2o3 nanocomposites; pani fe2o3; room temperature

Journal Title: Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.