LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanofabrication of normally-off GaN vertical nanowire MESFETs.

Photo by sxy_selia from unsplash

Gallium nitride (GaN) all-around (wrap) gate vertical nanowire (V-NW) field-effect transistors (FETs) are favorable for enhanced electrostatic control of the gate and selectivity for normally on/off operation. In this work,… Click to show full abstract

Gallium nitride (GaN) all-around (wrap) gate vertical nanowire (V-NW) field-effect transistors (FETs) are favorable for enhanced electrostatic control of the gate and selectivity for normally on/off operation. In this work, GaN V-NW FETs with a Schottky barrier gate (V-NW MESFETs), were fabricated for the first time. A nanofabrication process with comprehensive description of all processing steps is reported. It was validated with the demonstration of GaN V-NW MESFETs consisting of an array of 900 (30 × 30) GaN NWs with the narrowest until now reported diameter of 100 nm and all-around gate length of 250 nm. The GaN NWs were formed by a top-down approach, which combines conventional nanopatterning techniques and anisotropic wet etching of an initial GaN epilayer, grown by plasma assisted molecular beam epitaxy on a sapphire (0001) substrate. DC I-V characteristics exhibited normally-off operation and threshold voltage of +0.4 V, due to electron depletion region from the all-around Schottky barrier. A maximum drain-source current density (J ds) of 330 A cm-2 and maximum transconductance (g m) of 285 S cm-2 were obtained from I-V measurements. The results and directions for further optimization were discussed.

Keywords: normally gan; nanofabrication normally; gan vertical; nanowire; nanowire mesfets; vertical nanowire

Journal Title: Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.