LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gigahertz acoustic vibrations of Ga-doped ZnO nanoparticle array.

Photo by sxy_selia from unsplash

In this work, we present an experimental study on the acoustic vibrations of ZnO nanoparticles array with different concentration of Ga dopings by using femtosecond pump-probe technique. The Ga-doped ZnO… Click to show full abstract

In this work, we present an experimental study on the acoustic vibrations of ZnO nanoparticles array with different concentration of Ga dopings by using femtosecond pump-probe technique. The Ga-doped ZnO (GZO) nano-triangle particles with the sizes of 190, 232 and 348 nm are fabricated by nanosphere lithography and pulsed laser deposition method. The result indicates that the frequency of acoustic vibrations of GZO nanoparticles decrease as the Ga-concentration is increased. Importantly, the vibration period of the GZO nanoparticles at the same Ga doping concentration show a nonlinear increase as the nanoparticle size is increased, which is different from the common linear dependency in undoped ZnO nanoparticles. It may be attributed to the crystal structure distortion and elastic characteristics variation due to Ga doping, and the elastic modulus at 7.3% Ga doping is decreased by 30%-60% for GZO nanoparticles with different sizes. The study can be very helpful for evaluating the crystal structure distortion and elastic characteristics of doped nano-materials with optical methods. Besides, it can offer a complementary method of thermal management in ZnO based optoelectronic devices.

Keywords: gigahertz acoustic; vibrations doped; acoustic vibrations; nanoparticle; gzo nanoparticles; doped zno

Journal Title: Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.