LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic properties of asymmetric double Josephson junction stack with quasiparticle imbalance.

Photo from wikipedia

We study analytically and numerically the influence of the quasiparticle charge imbalance on the dynamics of the asymmetric Josephson stack formed by two inequivalent junctions: the fast capacitive junction JJ… Click to show full abstract

We study analytically and numerically the influence of the quasiparticle charge imbalance on the dynamics of the asymmetric Josephson stack formed by two inequivalent junctions: the fast capacitive junction JJ 1 and slow non-capacitive junction JJ 2. We find, that the switching of the fast junction into resistive state leads to significant increase of the effective critical current of the slow junction. At the same time, the initial switching of the slow junction may either increase or decrease the effective critical current of the fast junction, depending on ratio of their resistances and the value of the capacitance. Finally, we have found that the slow quasiparticle relaxation (in comparison with Josephson times) leads to appearance of the additional hysteresis on current-voltage characteristics.

Keywords: imbalance; quasiparticle; stack; dynamic properties; josephson; junction

Journal Title: Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.