Color filters are promising tools for the correction of color vision deficiency because a medical cure of this physiological deficiency is unattainable. After the introduction of organic-dye based color filters,… Click to show full abstract
Color filters are promising tools for the correction of color vision deficiency because a medical cure of this physiological deficiency is unattainable. After the introduction of organic-dye based color filters, however, no appreciable progress has been made. In this study, gold nanoparticle-based plasmonic color filter devices, that is, EyEye-lens and EyEye-film, were developed for the correction of color vision deficiency. The EyEye-lens was prepared by a simple immobilizing technique, and the EyEye-film was readily synthesized through a one-pot method. These color filter devices are based on tunable localized surface plasmon resonance (LSPR) in the visible and near-infrared spectral range. Plasmonic nanoparticles embedded in the color filter provide a specific spectral color range for the correction of color vision deficiency. Careful color vision tests using an Ishihara plate were performed on subjects with red-green color deficiency. Statistical analysis of the color vision tests revealed that the EyEye-lens and EyEye-film have similar or better performance in the correction of red-green color deficiency than a commercial ChromaGen lens. The newly developed color filter devices should be considered as alternative personalized color filter devices for practical applications.
               
Click one of the above tabs to view related content.