LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Additive Printing of Pure Nanocrystalline Nickel Thin Films Using Room Environment Electroplating.

Photo from wikipedia

Given its high temperature stability, oxidation-, corrosion- and wear-resistance, and ferromagnetic properties, Nickel (Ni) is one of the most technologically important metals. This article reports that pure and nanocrystalline (Ni)… Click to show full abstract

Given its high temperature stability, oxidation-, corrosion- and wear-resistance, and ferromagnetic properties, Nickel (Ni) is one of the most technologically important metals. This article reports that pure and nanocrystalline (Ni) films with excellent mechanical and magnetic properties can be additively printed at room environment without any high-temperature post-processing. The printing process is based on a nozzle-based electrochemical deposition from the classical Watt's bath. The printed Ni film showed a preferred (220) and (111) texture based on XRD (X-ray diffraction) spectra. The printed Ni film had close to bulk electrical conductivity; its indentation elastic modulus and hardness was measured to be 203 ± 6.7 GPa and 6.27 ± 0.34 GPa, respectively. Magnetoresistance, magnetic hysteresis loop, and magnetic domain imaging show promising results of the printed Ni for functional applications.

Keywords: room environment; pure nanocrystalline; printing

Journal Title: Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.