The strongly correlated rare earth nitrides display unusual coupled magnetic, electronic and superconducting properties, with predicted topological states. However, their air-sensitiveness has prevented in-depth investigations of their properties. In this… Click to show full abstract
The strongly correlated rare earth nitrides display unusual coupled magnetic, electronic and superconducting properties, with predicted topological states. However, their air-sensitiveness has prevented in-depth investigations of their properties. In this paper, we show that a 100 nm thick epitaxial samarium layer provides adequate passivation of 100 nm thick thin films of gadolinium nitride (GdN), the prototypical rare earth nitride, enabling ex-situ magnetic and structural characterizations. Using reflection high-energy electron diffraction, atomic force microscopy and energy dispersive x-ray spectroscopy, we investigate the thermal desorption of the samarium layer under vacuum. We finally demonstrate successful removal of the samarium capping layer in a separate vacuum chamber after exposure to air using a combination of argon ion sputtering and thermal desorption at 400°C, recovering the GdN surface.
               
Click one of the above tabs to view related content.