LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New hybridization coupling mechanism and enhanced sensitivity in a Cu2-xS@Au nanoparticle dimer.

Photo from wikipedia

To improve the refractive index sensitivity of a localized surface plasmon resonance (LSPR) sensor, we employ a new interparticle hybridization plasmon coupled resonance in a semiconductor-metal (Cu2-xS@Au) core-shell nanoparticle dimer… Click to show full abstract

To improve the refractive index sensitivity of a localized surface plasmon resonance (LSPR) sensor, we employ a new interparticle hybridization plasmon coupled resonance in a semiconductor-metal (Cu2-xS@Au) core-shell nanoparticle dimer (SMCSND), where the refractive index sensitivity can be improved by the generation of a tunable dual-band absorption spectrum at visible and near-infrared wavelengths. Owing to two LSPRs in different wavelength regions supported by the metal shell and semiconductor core, for the first time, we theoretically demonstrate that the new interparticle hybridization plasmon coupled mechanism in semiconductor-metal core-shell nanoparticle dimer depends not only on interparticle separation gap, but also on the nanoparticle shell thickness t. Electromagnetic model analysis reveals that there are two plasmon modes (Mode A and Mode C) associated with the interparticle hybridization plasmon coupled resonance, where the Mode C shows high sensitivity and figure of merit (FoM) to changes in the background dielectric medium. The tunability of the induced interparticle hybridization plasmon coupled resonance with different the separation distance and shell thickness can change the sensitivity and FoM of LSPR sensor in the visible to near-infrared region, which has broad application prospects.

Keywords: nanoparticle dimer; hybridization; sensitivity; interparticle hybridization; shell; plasmon

Journal Title: Nanotechnology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.