LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porous carbon/graphite nanosheet/ferromagnetic nanoparticle composite absorbents with adjustable electromagnetic properties

Photo from wikipedia

With the rapid development of electronic devices and wireless communication tools, it is urgent to design and fabricate low-cost, lightweight and effective electromagnetic absorption materials to solve interference of electromagnetic… Click to show full abstract

With the rapid development of electronic devices and wireless communication tools, it is urgent to design and fabricate low-cost, lightweight and effective electromagnetic absorption materials to solve interference of electromagnetic waves. Herein, a new strategy toward porous carbon/graphite nanosheet/ferromagnetic nanoparticle (PC/GNS/Fe) composites was designed to investigate the influence of crystalline carbon on electromagnetic wave absorption. To begin with, graphite nanosheets (GNSs) were incorporated into the porous polyimide by in situ polymerization, and Fe were added as a magnetic particle source and an agent to regulate the pore size. A series of PC/GNS/Fe composite absorbents were obtained. The direct carbonization of porous polymer precursors was beneficial to the design of the pore structure of materials. A hierarchically porous structure derived from the phase separation process was well maintained in the polyimide pyrolysis process. The results demonstrated that the presence of crystalline carbon could influence the reflection loss value and the frequency range. Hence, the absorbing performance can be optimized by adjusting the pore structure and the content of crystalline carbon in materials, which is conducive to obtaining electromagnetic wave absorption materials with excellent comprehensive performance.

Keywords: carbon; nanosheet ferromagnetic; carbon graphite; ferromagnetic nanoparticle; graphite nanosheet; porous carbon

Journal Title: Nanotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.