LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size effect of hybrid carbon nanofillers on the synergetic enhancement of the properties of HDPE-based nanocomposites

Photo by siora18 from unsplash

High-density polyethylene (HDPE)-based hybrid nanocomposites containing graphene nanoplatelets (GnPs) and multiwall carbon nanotubes (MWCNTs) were fabricated using melt mixing followed by compression molding. The influences of size and weight ratio… Click to show full abstract

High-density polyethylene (HDPE)-based hybrid nanocomposites containing graphene nanoplatelets (GnPs) and multiwall carbon nanotubes (MWCNTs) were fabricated using melt mixing followed by compression molding. The influences of size and weight ratio of both carbon-based nanofillers on the electrical, thermal, and mechanical properties of hybrid nanocomposites were evaluated. This study proves that the size and weight ratio of carbon-based nanofillers play a critical role in determining these properties. The optimum size and weight ratio of GnPs and MWCNTs are determined at the maximum achieved enhancement for each property. The HDPE-based nanocomposites containing GnPs with larger surface area and MWCNTs with higher aspect ratio display the highest electrical conductivity at GnPs/MWCNTs weight ratio of 2/3. The combination of GnPs with larger surface area and MWCNTs with lower aspect ratio provides the maximum Young’s modulus enhancement of hybrid nanocomposites at 1/4 weight ratio of GnPs and MWCNTs. The nanocomposite containing GnPs with the largest lateral size and MWCNTs with a higher aspect ratio at a 3/2 weight ratio exhibits the highest thermal conductivity. Also, at around the percolation threshold of GnPs, the incorporation of MWCNTs with larger aspect ratio into the HDPE-based nanocomposites containing GnPs with the largest lateral size shows a distinct synergic effect on the thermal conductivity and Young’s modulus, while an additive effect on the electrical conductivity and thermal stability.

Keywords: carbon; weight ratio; ratio; gnps; size; hdpe based

Journal Title: Nanotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.