LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable topologically nontrivial states in newly discovered graphyne allotropes: from Dirac nodal grid to Dirac nodal loop

Photo by kellysikkema from unsplash

By means of quotient-graph associated crystal prediction method, a new graphyne allotrope with unique Dirac nodal grid state is reported in this work. It is named as 191-E24Y24-1 according to… Click to show full abstract

By means of quotient-graph associated crystal prediction method, a new graphyne allotrope with unique Dirac nodal grid state is reported in this work. It is named as 191-E24Y24-1 according to its hexagonal lattice (with P6/mmm symmetry, No. 191) containing 24 sp2-hybridized carbon atoms and 24 sp-hybridized ones. The first-principles results show that the total energy of 191-E24Y24-1 is more favorable than that of recent synthesized β -graphdiyne and carbon ene-yne. It is also demonstrated to be dynamically, thermally, and mechanically stable. Interestingly, the 191-E24Y24-1 harbors intrinsic semimetal features showing intriguing hexagonal Dirac nodal grid state in the reciprocal space. Such unique electronic state is stable against small external tensile strains, and it is tunable under compression strains which will transform to new triangle Dirac nodal grid state. Moreover, a new metastable graphyne allotrope named 191-E12Y36-4 with Dirac nodal loop state is also observed in the process of stretching 191-E24Y24-1 with large tensile strains. The results presented in this work reveal two novel graphyne allotropes with exotic electronic properties. These discoveries are not only physical interesting, but also provide potential material candidates for carbon-based high performance electronic nanodevices.

Keywords: nodal grid; state; 191 e24y24; dirac nodal; nodal loop; dirac

Journal Title: Nanotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.