In this letter, the role of domain wall (DW) on bulk photovoltaic effect (BPV) effect in BiFeO3 (BFO) films was studied by x-ray reciprocal space mapping and conductive atomic force… Click to show full abstract
In this letter, the role of domain wall (DW) on bulk photovoltaic effect (BPV) effect in BiFeO3 (BFO) films was studied by x-ray reciprocal space mapping and conductive atomic force microscope. It was found that the domain structure and DW can be tuned by controlling the epitaxial orientation of BFO film. Remarkably, under 1 sun AM 1.5 G illumination, the 109° DW enhances the transport of photogenerated carriers and simultaneously improves the conductivity and power conversion efficiency (PCE). The short-circuit current density and PCE can reach 171.15 μA cm−2 and 0.1127%, respectively. Therefore, our study reveals the correlation between the DW and the BPV effect in BFO film and provides a new pathway to improve the PCE of BFO-based photovoltaic device.
               
Click one of the above tabs to view related content.