LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies

Photo by chrisjoelcampbell from unsplash

Chiral linear assemblies of plasmonic nanoparticles with chiral optical activity often show low asymmetry factors. Systematic understanding of the structure-property relationship in these systems must be improved to facilitate rational… Click to show full abstract

Chiral linear assemblies of plasmonic nanoparticles with chiral optical activity often show low asymmetry factors. Systematic understanding of the structure-property relationship in these systems must be improved to facilitate rational design of their chiroptical response. Here we study the effect of large area interparticle gaps in chiral linear nanoparticle assemblies on their chiroptical properties using a tetrahelix structure formed by a linear face-to-face assembly of nanoscale Au tetrahedra. Using finite-difference time-domain and finite element methods, we performed in-depth evaluation of the extinction spectra and electric field distribution in the tetrahelix structure and its dependence on various geometric parameters. The reported structure supports various plasmonic modes, one of which shows a strong incident light handedness selectivity that is associated with large face-to-face junctions. This works highlights the importance of gap engineering in chiral plasmonic assemblies to achieve g-factors greater than 1 and produce structures with a handedness-selective optical response.

Keywords: chiroptical properties; face; geometry; nanoparticle assemblies; structure

Journal Title: Nanotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.