LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local magnetic behaviour of highly disordered undoped and Co-doped Bi2Se3 nanoplates: a muon spin relaxation study

Photo by pawel_czerwinski from unsplash

Magnetism induced by defects in nominally non-magnetic solids has attracted intense scientific interest in recent years. The local magnetism in highly disordered undoped and Co-doped topological insulator (TI) Bi2Se3 nanoplates… Click to show full abstract

Magnetism induced by defects in nominally non-magnetic solids has attracted intense scientific interest in recent years. The local magnetism in highly disordered undoped and Co-doped topological insulator (TI) Bi2Se3 nanoplates has been investigated by muon spin relaxation (μSR). Using μSR spectroscopy, together with other macroscopic characterizations, we find that these nanoplates are composed of a core with both static fields and dynamically fluctuating moments, and a shell with purely dynamically fluctuating moments. The fluctuations in the core die out at low temperatures, while those in the shell continue till 2 K. When Bi2Se3 is doped with Co, the static magnetic component increases, whilst keeping the dual (static-plus-dynamic) nature intact. The findings indicate that highly disordered TI’s could constitute a new class of promising magnetic materials that can be engineered by magnetic impurity doping.

Keywords: bi2se3 nanoplates; bi2se3; disordered undoped; undoped doped; highly disordered; muon spin

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.