LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance Enhancement of Gas Sensing by Modification of Molybdenum Selenide Nanosheets with Metal Nanoparticles.

Photo from wikipedia

In this paper, nanostructured Molybdenum Selenide (MoSe2) with composited phases are synthesized by hydrothermal method, and the products are modified by metal anoparticles to improve the gas sensing performance. Microstructure characterization shows… Click to show full abstract

In this paper, nanostructured Molybdenum Selenide (MoSe2) with composited phases are synthesized by hydrothermal method, and the products are modified by metal anoparticles to improve the gas sensing performance. Microstructure characterization shows that few layered 1T/2H-MoSe2 nanosheets have been successfully prepared. Both the morphology and composition of nanosheets could be tuned by the reaction parameters. It is shown the MoSe2-based nanomaterials have excellent selectivity to Nitrogen dioxide (NO2) according to gas sensing properties measurement. The sensitivity of 1T/2H-MoSe2 nanosheets modified by Cu nanoparticles is 17.73 (50 ppm NO2) at the optimal operating temperature, which is the highest compared with other samples. The sensors also exhibit rapid response/recovery time and high stability. The sensing mechanism of MoSe2 nanosheets toward NO2 is investigated based on the first-principles calculation. The results suggest the modification by metal nanoparticles could significantly improve the adsorption energy and the charge transfer between gas molecule and MoSe2. This work demonstrates a promising guidance for the design of new NO2 gas sensing materials and devices.

Keywords: gas sensing; gas; modification; metal nanoparticles; performance; molybdenum selenide

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.